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Abstract
Uncertainty relations for a pair of arbitrary measurements are posed in the
form of inequalities using the Rényi entropies. The formulation deals with
POVM measurements on finite-dimensional Hilbert space. Both the entropic
uncertainty relations with state-dependent and state-independent bounds are
presented. The results are illustrated on the example of measurements for state
discrimination.

PACS numbers: 03.65.Ta, 03.67.−a

1. Introduction

The Heisenberg uncertainty principle [1] is the best known of those results that express
distinctions between the quantum world and the classical world. Several ways to pose the
uncertainty principle have been developed. According to Robertson’s formulation [2], the
standard deviations of the observables A and B measured in the quantum state ψ obey
�A �B � (1/2)|〈ψ, [A, B]ψ〉|, where 〈·, ·〉 denotes the inner product. Due to various
measurement scenarios, many relations have been stated in more detailed terms (see [3–
5] and references therein). In particular, explicit noise-disturbance relations were given [6, 7].
Uncertainty relations are also linked with the complementarity [8, 9] and mutually unbiased
bases initially studied in [10]. The concept of entropy is widely used in physics [11]. So it
is natural to express Heisenberg’s uncertainty principle in terms of entropic measures. The
first relation for position and momentum in terms of the Shannon entropies was obtained by
Hirschman [12]. Hirschman’s result has been improved by Beckner [13], and by Bialynicki-
Birula and Mycielski [14].

In general, entropic formulation of the uncertainty principle was examined by Deutsch
[15]. He stressed that the bound (1/2)|〈ψ, [A, B]ψ〉| becomes trivial for any eigenstate of
either of the two observables. On the other hand, to each measured observable we can assign
the Shannon entropy of generated probability distribution. Deutsch obtained a lower bound
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on the sum of the Shannon entropies related to observables without degeneracy [15]. The
improved lower bound had been conjectured by Kraus [16] and later stated by Maassen and
Uffink [17]. The method of proof utilized Riesz’s theorem. The authors of [17] have also
shown an extension of this method to some canonical variables. A relevant approach to
degenerate observables has been developed by the authors of [18]. Using Naimark’s theorem,
they derived the entropic relation for a pair of generalized measurements as well. An entropic
uncertainty relation for (d + 1) mutually unbiased orthogonal measurements in d-dimensional
Hilbert space was obtained [19]. For the specified classes of observables, the entropic relations
were considered in the papers [20, 21].

There exist two considerable extensions of the Shannon entropy. The Rényi entropy [22]
is now used in many disciplines. Its properties from the physical viewpoint are examined
in [23]. Some bounds in terms of this measure are discussed in [24, 25]. Larsen expressed
uncertainty relations via so-called purities [26], which are connected with the Rényi entropy
of order 2. Bialynicki-Birula obtained the relations in terms of the Rényi entropies for the
position–momentum and angle–angular momentum pairs [27]. Using the Tsallis entropy,
some bounds were also given [28–30]. Recently, different kinds of uncertainty principle have
been discussed [31–33].

In the present work, we will obtain uncertainty relations for a pair of arbitrary
measurements in the form of inequalities using the Rényi entropies. Some remarks on the
physical sense of the proved inequalities will be given. The paper is organized as follows. In
section 2, the main result and the notation are described. Sections 3 and 4 are devoted to
the proof of the claimed result. Due to some complexity, we proceed in several steps. In
section 5, a significance of the treated entropic bound in comparison with Robertson’s
formulation is discussed. We also consider an example in which one measurement is not
actually projective.

2. Notation and main result

For real α > 0 and α �= 1, the Rényi entropy of order α of the probability distribution {pi} is
defined by [22]

Hα(p) := (1 − α)−1 ln

{∑
i

pα
i

}
. (2.1)

This quantity is a non-increasing function of α: if α < β, then Hα � Hβ [22]. For α > 1,
the Rényi entropy Hα(p) is neither purely convex nor purely concave [23]. The limit α → 1
recovers the Shannon entropy H1(p) = −∑

i pi ln pi . In the following, orders of the Rényi
entropy are assumed to be different from 1. The bounds for the Shannon entropies can be
obtained by taking the limit α → 1 in the final inequalities.

Let H be the finite-dimensional Hilbert space. A general quantum measurement is
described by ‘positive operator-valued measure’ (POVM). This is a set {Mi} of positive
semidefinite matrices obeying the completeness relation

∑
i Mi = I, where I is the identity

matrix [34]. For given POVM {Mi} and density operator ρ on H, the probability of ith
outcome is equal to pi = tr(Miρ) [34]. In mathematics literature, such a set {Mi} is often
called ‘generalized resolution of the identity’ for the space H (for a discussion, see [35]).
In the case of orthogonal projections, we call them ‘orthogonal resolution of the identity’ or
‘projector-valued measure’ (PVM).

The Rényi entropy Hα(M|ρ) of generated probability distribution is then defined by
equations (2.1) and pi = tr(Miρ). When a quantum state is pure, i.e. ρ = ψ ψ† and ‖ψ‖ = 1,
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we write Hα(M|ψ). In this case, we have tr(Miρ) = 〈ψ, Miψ〉. Let {Mi} and {Nj } be two
POVMs, and let ψ be a pure state. By definition, we put the function

f (M, N|ψ) := max
ij

∥∥M1/2
i ψ

∥∥−1∥∥N1/2
j ψ

∥∥−1 |〈Miψ, Njψ〉|, (2.2)

where the maximization is over those values of labels i and j that satisfy
∥∥M1/2

i ψ
∥∥ �= 0 and∥∥N1/2

j ψ
∥∥ �= 0. In the case of a mixed state ρ with the spectral decomposition

ρ =
∑

λ

λ ψλψ
†
λ (2.3)

we also define

f (M, N|ρ) := max {f (M, N|ψλ) : λ ∈ spec(ρ)} . (2.4)

Theorem 1. Let {Mi} and {Nj } be two POVM measurements. Then for the arbitrary density
operator ρ, there holds

Hα(M|ρ) + Hβ(N|ρ) � −2 ln f (M, N|ρ), (2.5)

where orders α and β satisfy 1/α + 1/β = 2.

This statement generalizes theorem 2.5 of [18] in the following respects. First, we deal
with the Rényi entropies instead of the Shannon entropies. Second, only for pure state, the
state-dependent bound is given in [18], whereas our result holds for the arbitrary mixed state.
Deriving a relation for the mixed state, the authors of [18] used concavity of the Shannon
entropy. But this is a very difficult way to obtain state-dependent bound. We can also give
a variety of (2.5) that does not depend on the quantum state. Putting the operator norm
‖A‖ := max {‖Aψ‖ : ‖ψ‖ = 1}, we define

f̄ (M, N) := max
ij

∥∥M1/2
i N1/2

j

∥∥. (2.6)

Using the relation |〈Miψ, Njψ〉| �
∥∥M1/2

i N1/2
j

∥∥∥∥M1/2
i ψ

∥∥∥∥N1/2
j ψ

∥∥ proven in [18], and
definitions (2.2) and (2.4), one satisfies the inequality f (M, N|ρ) � f̄ (M, N). It then follows
from (2.5) that

Hα(M|ρ) + Hβ(N|ρ) � −2 ln f̄ (M, N) (2.7)

under the condition 1/α + 1/β = 2. The particular case of (2.7) with the Shannon entropies
was stated in [18]. For two one-rank PVMs, it reduces to the relation that had been conjectured
by Kraus [16] and later proved by Maassen and Uffink [17]. Note that the authors of [17] have
briefly discussed an extension of their relation to canonically conjugate variables including
the standard case of position and momentum.

We now recall a version of Riesz’s theorem (see theorem 297 in [36]). Let x ∈ C
n be

n-tuple of complex numbers xj and let tij be the entries of the matrix T of order m × n. Define
η to be maximum of |tij |, i.e. η := max{|tij | : 1 � i � m, 1 � j � n}. The fixed matrix T
describes a linear transformation C

n → C
m. That is, to each x we assign m-tuple y ∈ C

m with
elements

yi(x) :=
n∑

j=1

tij xj (i = 1, . . . , m). (2.8)

For arbitrary b � 1, we also define the function Sb(x) := (∑
j |xj |b

)1/b
.
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Lemma 2. Suppose the matrix T satisfies∑
i

|yi |2 �
∑

j

|xj |2 (2.9)

for all x ∈ C
n; then

Sa(y) � η(2−b)/b Sb(x), (2.10)

where 1/a + 1/b = 1 and 1 < b < 2.

3. Both the measurements are projective

A standard quantum measurement is described by PVM. This is a set {Pi} of Hermitian
matrices obeying the property PiPk = δikPi and the completeness relation. The two PVMs
{Pi} and {Qj } generate two probability distributions

p
(ψ)

i = 〈Piψ, Piψ〉, q
(ψ)

j = 〈Qjψ, Qjψ〉. (3.1)

Proposition 3. For any two projective measurements {Pi} and {Qj } and an arbitrary density
matrix ρ, there holds

Hα(P|ρ) + Hβ(Q|ρ) � −2 ln f (P, Q|ρ), (3.2)

where orders α and β satisfy 1/α + 1/β = 2.

Proof. For those values of labels i and j that fulfil ‖Piψ‖ �= 0 and ‖Qjψ‖ �= 0, we define
two sets of vectors

ui := ‖Piψ‖−1 Piψ, vj := ‖Qjψ‖−1 Qjψ. (3.3)

With no loss of generality, we can mean that 1 � i � m and 1 � j � n. The ui’s and the vj ’s
form two (generally incomplete) orthonormal sets in H. We now define

tij := 〈ui , vj 〉. (3.4)

In line with (2.8) and (3.4), we have yi(x) = 〈ui , w〉, where w := ∑
j xj vj by definition. It

is clear that the vector
∑

i yiui is an orthogonal projection of the vector w onto the subspace
spanned by the ui’s. Hence, we obtain∑

i

|yi |2 � ‖w‖2 ≡
∑

j

|xj |2. (3.5)

Therefore, condition (2.9) is satisfied for all x ∈ C
n. So result (2.10) can be applied. We

shall now utilize this result for the values y ′
i = ‖Piψ‖, x ′

j = ‖Qjψ‖. Using the completeness
relation for PVMs {Pi} and {Qj } and 〈ui , uk〉 = δik , we obtain y ′

i = ∑
j 〈ui , vj 〉 x ′

j . Thus,
the values y ′

i and x ′
j are really connected by relation (2.8) with the matrix elements (3.4), and

p
(ψ)

i = |y ′
i |2, q

(ψ)

j = |x ′
j |2 due to (3.1). Let us put a = 2α and b = 2β. Squaring (2.10), after

relevant substitutions we get

Sα(p(ψ)) � f (P, Q|ψ)2(1−β)/βSβ(q(ψ)), (3.6)

where 1/α + 1/β = 2 and 1/2 < β < 1. Indeed, due to Pi = P1/2
i , Qj = Q1/2

j (3.3) and
(3.4), the maximum of |tij | is equal to f (P, Q|ψ). For mixed state of the form (2.3), the
corresponding probabilities are rewritten as

pi = tr(Piρ) =
∑

λ

λp
(λ)
i , qj = tr(Qj ρ) =

∑
λ

λq
(λ)
j . (3.7)
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Here, the values p
(λ)
i and q

(λ)
j are defined by substituting ψλ for ψ into equations (3.1).

Inequality (3.6) holds for each of the states ψλ. Due to definition (2.4), for all λ and the same
conditions on α and β we can write

λ Sα(p(λ)) � f (P, Q|ρ)2(1−β)/βλ Sβ(q(λ)). (3.8)

In this stage, we use the Minkowski inequality [36]. By α > 1 and β < 1, there hold

Sα

(∑
λ

λp(λ)

)
�

∑
λ

λSα(p(λ)),
∑

λ

λSβ(q(λ)) � Sβ

(∑
λ

λq(λ)

)
.

Summing (3.8) with respect to λ and using these inequalities, we finally get

Sα(p) � f (P, Q|ρ)2(1−β)/βSβ(q). (3.9)

By (2.1), we have ln Sα(p) = α−1(1−α)Hα(p), ln Sβ(q) = β−1(1−β)Hβ(q). It then follows
from (3.9) and (1 − β)/β > 0 that

α−1(1 − α)β(1 − β)−1Hα(p) � 2 ln f (P, Q|ρ) + Hβ(q). (3.10)

If 1/α + 1/β = 2 and α, β �= 1, then the factor of Hα(p) in (3.10) is equal to (−1). So
inequality (3.10) leads to (3.2). This concludes the proof for α > β. By permutation of the
two PVMs, we recover the remaining case. �

4. The general case

Developing the ideas of [18], we use the Naimark extension. All the necessary details are
gathered in the appendix.

Proposition 4. Let {Mi} be a POVM measurement, and let {Qj } be a PVM measurement.
Then for an arbitrary mixed state ρ

Hα(M|ρ) + Hβ(Q|ρ) � −2 ln f (M, Q|ρ), (4.1)

where orders α and β satisfy 1/α + 1/β = 2.

Proof. Substituting Mi for Ei and Qj for Gj in the formulae of the appendix, we consider the
measurements {M̃i} and {Q̃j } in the enlarged space H̃. The measurement {M̃i} is projective
due to the Naimark theorem. The measurement {Q̃j } is projective, since the measurement
{Qj } is projective. By relation (3.2), we have

Hα(M̃|ω̃) + Hβ(Q̃|ω̃) � −2 ln f (M̃, Q̃|ω̃) (4.2)

for an arbitrary mixed state ω̃ in the enlarged space H̃. To each density matrix of the form
(2.3) assign the density matrix

ρ̃ =
∑

λ

λ ψ̃λψ̃
†
λ, (4.3)

where the state vector ψ̃λ is given by ψ̃λ
T

:= [
ψT

λ 0
]
. In the particular case of the matrix ρ̃,

relation (4.2) is also valid. Since the vectors ψλ form an orthonormal set in H,

ψ̃
†
λψ̃μ = [

ψ
†
λ 0

] [
ψμ

0

]
= ψ

†
λψμ = δλμ. (4.4)

So the vectors ψ̃λ form the (incomplete) orthonormal set in H̃. Due to this fact and the
properties of the trace,

tr(M̃i ρ̃) =
∑

λ

λ〈ψ̃λ, M̃iψ̃λ〉 =
∑

λ

λ〈ψλ, Miψλ〉 = tr(Miρ), (4.5)

5
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where we use (A.5). By a similar argument with (A.7), tr{Q̃j ρ̃} = tr{Qj ρ}. In other words,
we have p̃i = pi and q̃j = qj for any state of the form (4.3). Therefore, the corresponding
Rényi entropies are related by

Hα(M̃|ρ̃) = Hα(M|ρ), Hβ(Q̃|ρ̃) = Hβ(Q|ρ). (4.6)

By the calculations, we also have

f (M̃, Q̃|ρ̃) = f (M, Q|ρ). (4.7)

Formulae (4.6) and (4.7) hold for each pair ρ̃ and ρ defined by (4.3) and (2.3). Since the latter
is a general form of the density matrix on H, relation (4.2) provides (4.1). �

The final step is to prove theorem 1. Following the previous argumentation, let us
substitute Mi for Ei and Nj for Gj in the formulae of the appendix. So we will consider the
two measurements {M̃i} and {Ñj } in the enlarged space H̃. The measurement {M̃i} is now
projective due to the Naimark theorem. In general, the measurement {Ñj } is not projective.
By relation (4.1), for PVM {M̃i} and POVM {Ñj } we have

Hα(M̃|ω̃) + Hβ(Ñ|ω̃) � −2 ln f (M̃, Ñ|ω̃). (4.8)

Here, 1/α + 1/β = 2 and ω̃ denotes an arbitrary mixed state in the enlarged space H̃.
Replacing Q̃j with Ñj in formulae (4.6) and (4.7), we get Hβ(Ñ|ρ̃) = Hβ(N|ρ) and
f (M̃, Ñ|ρ̃) = f (M, N|ρ) for an arbitrary matrix of the form (4.3). By these equations,
from (4.8) we immediately obtain the main result formulated as theorem 1.

5. Discussion

Entropic uncertainty relations provide an alternative way to formulate Heisenberg’s uncertainty
principle [15]. It is clearly shown in [17] that they can give a more detailed characterization in
many respects. Moreover, the method based on Riesz’s theorem can be extended to the case of
infinite-dimensional Hilbert space. The authors of [17] have also presented an example where
a more informative relation is expressed via measures different from the Shannon entropy.
We will discuss relations (2.5) and (3.2) in those respects that are not elucidated enough in
the literature. Let us consider two observables A = ∑

i aiPi and B = ∑
j bj Qj . The relation

�A�B � (1/2)|〈ψ, [A, B]ψ〉| leads to a trivial zero bound, when ψ is an eigenstate of A or
B. How does the bound (3.2) run in this case? Take a unit eigenvector ϕ0 of A such that
P0ϕ0 = ϕ0, Piϕ0 = 0 for i �= 0. Then the function in (3.2) is rewritten as

f (P, Q|ϕ0) = max{‖Qjϕ0‖−1 |〈ϕ0, Qjϕ0〉| : ‖Qjϕ0‖ �= 0}. (5.1)

By the Schwarz inequality we have f (P, Q|ϕ0) � 1, where the equality occurs if and only if
Qjϕ0 = c ϕ0 for some scalar c and label j , say j = 1. This scalar may be unit only, since each
Qj is a projector. If Q1ϕ0 = ϕ0 happens, there is a nonzero subspace K 
 ϕ0 such that the
operators A and B act as commuting in K. The density matrix ϕ0ϕ

†
0 also commutes with both

A and B. According to the classical character of this case, f (P, Q|ϕ0) = 1 and the entropic
bound in (3.2) becomes trivial. Indeed, the eigenvector ϕ0 is common for the observables
and the outcomes of their measurement are fully certain. But if Qjϕ0 �= ϕ0 for all j , then
f (P, Q|ϕ0) < 1 and the right-hand side of (3.2) is strictly positive. That is, the entropic
relation (3.2) actually gives a nontrivial bound. In contrast, we have 〈ϕ0, [A, B]ϕ0〉 = 0
regardless of how B acts on ϕ0. So we found an advantage over the customary formulation of
the uncertainty principle.

Another point is that POVMs can directly be put in the entropic formulation. So it is
interesting to consider the case where generalized measurements are actual. There exist two

6
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well-known approaches to discrimination between the non-identical pure states ϕ+ and ϕ−.
It is handy to parameterize these states in a symmetric way as ϕ± = cos θ e0 ± sin θ e1,
where {e0, e1} is an orthonormal set. The overlap between ϕ+ and ϕ− is equal to S = cos 2θ

(0 < 2θ � π/2). In the Helstrom scheme [39], the optimal measurement is reached by two
projectors N+ = n+ n †

+ and N− = n− n †
− with n± = (e0 ± e1)/

√
2. The method distinguishes

between ϕ+ and ϕ− with the probability of correct answer equal to (1 + sin 2θ)/2. Another
measurement is built for unambiguous discrimination proposed in [40–42]. This approach
sometimes gives an inconclusive answer, but never makes an error of misidentification. Putting
two normalized vectors

m± = sin θ e0 ± cos θ e1, 〈m+, ϕ−〉 = 0, 〈m−, ϕ+〉 = 0, (5.2)

we have M± = (1+S)−1m± m †
± and M0 = 2S(1+S)−1e0 e†0. The probability of an inconclusive

answer is 〈ϕ±, M0ϕ±〉 = S. If both the POVMs have only one-rank elements Mi = μimim
†
i

and Nj = νj nj n†
j , then relation (2.5) is reduced to

Hα(M|ρ) + Hβ(N|ρ) � − ln{maxf (i, j)2}, (5.3)

where f (i, j)2 = μiνj |〈mi , nj 〉|2. In our example, we obtain that the maximum is either
f (+, +)2 = f (−,−)2 = (1 + sin 2θ)/(2(1 + S)) or f (0,±)2 = S/(1 + S). The former holds
for 0 � S � 4/5, the latter holds for 4/5 � S < 1. For simulation of classical information,
orthogonal states are fully sufficient. In the limit S → 0 (2θ → π/2), the operator M0 is
zero and POVM {Mi} actually coincides with {Nj }. Here, relation (5.3) becomes trivial, i.e.
Hα(M)+Hβ(N) � 0. For two almost identical states, however, we have Hα(M)+Hβ(N) � ln 2.
In fact, this bound is valid for all values 0 < 2θ � π/4. So we observe a principal distinction
between minimum error discrimination and unambiguous discrimination that are like in the
classical limit solely. It is conventional that an incompleteness of the customary formulation
is induced by the dependence of the bound on a quantum state [15, 17]. To sum up we see
that such a dependence is not crucial for entropic uncertainty relations.
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Appendix. Naimark’s extension and related questions

Naimark proved that each generalized resolution of identity can be realized as an orthogonal
resolution of the identity for the enlarged space H̃ which contains H as a subspace [35, 38].
Let {Ei} be a set of positive semidefinite matrices satisfying∑

i

Ei = IH, (A.1)

where IH is the identity operator in the space H. Let us define a space H̃ := H ⊕ L, where L
is a space of proper dimensionality. As is shown in [37], one can build partitioned matrices of
the form

Ẽi :=
[

Ei Ri

R†
i Li

]
, (A.2)

7
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so that the Ẽi’s are orthogonal projections in the enlarged space H̃ and∑
i

Ẽi = Ĩ. (A.3)

In (A.2) the orders of submatrices Ri and Li should be clear from the context. An arbitrary
vector in the enlarged space is represented by the column ũ such that ũT = [uT zT ] with u ∈ H
and z ∈ L. The entries of this column are components of ũ with respect to the orthonormal
basis in H̃ obtained by extension of the initial basis in H. To each ψ ∈ H assign the vector
ψ̃ ∈ H̃ defined by

ψ̃ :=
[
ψ

0

]
. (A.4)

Following the rules of block multiplication, we have

〈ψ̃, Ẽj ψ̃〉 ≡ ψ̃†Ẽiψ̃ = [
ψ† 0

] [
Eiψ

R†
iψ

]
= ψ†Eiψ ≡ 〈ψ, Ejψ〉. (A.5)

That is, the probability of getting outcome i is not changed under the extension.
Let {Gj } be another resolution of the identity for the space H. To each Gj assign the

operator G̃j acting on the space H̃. In the matrix representation, we define [37]

G̃1 :=
[

G1 0
0 IL

]
, G̃j :=

[
Gj 0
0 0

]
(j �= 1). (A.6)

Here, the identity matrix IL of proper order shows the action of the identity in the subspace
L. It is easy to check that the set {G̃j } is a resolution of the identity for the space H̃ [37].
In addition, if the resolution {Gj } is orthogonal, then the resolution {G̃j } is also orthogonal.
Further, for any state of the form (A.4) we have

〈ψ̃, G̃j ψ̃〉 ≡ ψ̃†G̃j ψ̃ = ψ†Gjψ ≡ 〈ψ, Gjψ〉. (A.7)

So, for the second measurement the probability of getting outcome j is also not changed
under the extension. To sum up, we can say the following. Starting with the two POVM
measurements {Ei} and {Gj }, we have built the two measurements {̃Ei} and {G̃j } in the
enlarged space H̃. But the first measurement {̃Ei} is now projective.
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